Сетка Аполлония — Википедия. Что такое Сетка Аполлония

Сетка Аполлония


Материал из Википедии — свободной энциклопедии
Пример сетки Аполлония

Сетка Аполлонияфрактал, строящийся по трём попарно касающимся окружностям. Представляет собой предельное множество всевозможных последовательностей окружностей, каждая из которых касается трёх уже построенных. Назван в честь греческого математика Аполлония Пергского.

Построение

Начнём с трех окружностей, каждая из которых является касательной к двум другим. Далее добавляем к имеющейся фигуре рекурсивно окружности, каждая из которых касается каких-нибудь трёх уже построенных окружностей. На первом шаге мы добавим две, на втором шесть, и так далее.

Продолжая построение, мы добавляем 2·3n новых окружностей на  n-ом шаге.

Замыкание построенных окружностей называется сеткой Аполлония.

Свойства

  • Сетка Аполлония имеет Хаусдорфову размерность около 1.3057[1].
  • Сетку Аполлония можно представить как объединение двух подмножеств, гомеоморфных треугольнику Серпинского, с общими вершинами.
  • Подгруппа группы преобразований Мёбиуса, состоящая из таких преобразований, которые переводят сетку Аполлония в себя, действует транзитивно на окружностях сетки.
  • Сетку Апполония можно определить как предельное множество группы преобразований плоскости образованной инверсиями в четырёх попарно касательных окружностях.

Кривизны

Кривизна окружности определяется как обратное к его радиусу.

  • Отрицательная кривизна указывает на то, что все другие круги касаются эту окружность изнутри. Это ограничивающая окружность.
  • Нулевая кривизна дает линию (круг с бесконечным радиусом).
  • Положительная кривизна указывает на то, что все другие круги касаются эту окружность снаружи. Этот круг находится внутри круга с отрицательной кривизной.

В сетке Аполлония все окружности имеют положительную кривизну, кроме одной, ограничивающей окружности.

Целые сетки Аполлония

Предположим, обозначают кривизны четырёх попарно касающихся окружностей. По теореме Декарта:

Отсюда следует, что если четыре попарно касающиеся окружности имеют целые кривизны, то и все остальные окружности в их сетке Аполлония имеют целые кривизны. Имеется бесконечно много таких целых сеток. [2] Ниже приведены несколько целых сеток с отмеченными кривизнами окружностей.

Вариации и обобщения

Пространственная сетка Аполлония
  • Трехмерный эквивалент сетки Аполлония — Аполлониева упаковка сфер.

Примечания


Что такое Wiki.cologne Вики является главным информационным ресурсом в интернете. Она открыта для любого пользователя. Вики это библиотека, которая является общественной и многоязычной.

Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License.

Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. wiki.cologne является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).

E-mail: admin@wiki.cologne